联系我们
您当前所在位置: 首页 > 学术研究 > 学术报告 > 正文

Generative downscaling of PDE solvers with physics-guided diffusion models

2024年06月11日 10:53

报告题目:Generative downscaling of PDE solvers with physics-guided diffusion models

报告时间:2024-06-12 10:50-11:50

报  告 人:徐悟哲  博士(UMass Amherst)

报告地点:理学院东北楼四楼报告厅(404)

Abstract: In this talk, I will introduce our novel Physics-Guided Diffusion Model (PGDM) for solving complex PDEs via downscaling, transforming low-resolution data into high-fidelity solutions. Our numerical experiments demonstrate that PGDM not only achieves computation speeds over ten times faster than traditional methods but also exceeds the accuracy of other data-driven approaches like FNO, particularly in limiting data scenarios.


演讲者 徐悟哲 博士(UMass Amherst) 地址 理学院东北楼四楼报告厅(404)
会议时间 2024-06-12 时间段 2024-06-12 10:50-11:50