联系我们
您当前所在位置: 首页 > 学术研究 > 学术报告 > 正文

The dynamical system analysis of single-cell omics data

2024年06月12日 17:13

报告题目:The dynamical system analysis of single-cell omics data

报告时间:2024-06-19   14:30-16:30

报  告 人:周沛劼   研究员 (北京大学)

报告地点:老外楼317

Abstract: Single-cell sequencing technologies provide unprecedented resolution for studying the dynamic process of cell-state transitions during development and complex disease. In this talk, I will discuss how machine learning has enabled us to overcome this challenge and use dynamical systems techniques to analyze scRNA-seq data. I will introduce the low-dimensional dynamical manifold to identify attractor basins and transition probabilities in snapshot data. I will also present the usage of non-equilibrium dynamical systems theory to analyze attractor stability and identify transition-driving genes in gene expression and splicing processes. Finally, I will discuss our efforts to construct a time-varying landscape, which interpolates non-stationary time-series scRNA-seq data using Wasserstein-Fisher-Rao metric, unbalanced optimal transport and its neural network-based partial differential equation implementations.


演讲者 周沛劼 研究员 (北京大学) 地址 老外楼317
会议时间 2024-06-19 时间段 2024-06-19 14:30-16:30