报告题目:Block Randomized Experiments, Block 2K Factorial Experiments, and Covariate Adjustment
报告时间:2024.06.29 09:20-09:45
报 告 人 :杨玥含(中央财经大学)
报告地点:理学院东北楼302报告厅
Abstract:Randomized block factorial experiments are widely used in industrial engineering, clinical trials, and social science. Researchers often use a linear model and analysis of covariance to analyze experimental results; however, limited studies have addressed the validity and robustness of the resulting inferences because assumptions for a linear model might not be justified by randomization in randomized block factorial experiments. In this article, we establish a new finite population joint central limit theorem for usual (unadjusted) factorial effect estimators in randomized block 2K factorial experiments. Our theorem is obtained under a randomization-based inference framework, making use of an extension of the vector form of the Wald–Wolfowitz–Hoeffding theorem for a linear rank statistic. It is robust to model misspecification, numbers of blocks, block sizes, and propensity scores across blocks. To improve the estimation and inference efficiency, we propose four covariate adjustment methods. We show that under mild conditions, the resulting covariate-adjusted factorial effect estimators are consistent, jointly asymptotically normal, and generally more efficient than the unadjusted estimator. In addition, we propose Neyman-type conservative estimators for the asymptotic covariances to facilitate valid inferences. Simulation studies and a clinical trial data analysis demonstrate the benefits of the covariate adjustment methods.