联系我们
您当前所在位置: 首页 > 学术研究 > 学术报告 > 正文

Logarithmic-Regret Quantum Learning Algorithms for Zero-Sum Games

2024年11月07日 15:07

报告题目:Logarithmic-Regret Quantum Learning Algorithms for Zero-Sum Games

报告时间:2024-11-08   15:00-16:00

报 告 人:Minbo Gao 博士(中国科学院软件研究所)

报告地点:理学院东北楼四楼报告厅(404

Abstract: We propose the first online quantum algorithm for zero-sum games with O ̃(1)regret under the game setting. Moreover, our quantum algorithm computes an ε-approximate Nash equilibrium of an m×nmatrix zero-sum game in quantum time O ̃(√(m+n)/ε^2.5 ), yielding a quadratic improvement over classical algorithms in terms of m,n. Our algorithm uses standard quantum inputs and generates classical outputs with succinct descriptions, facilitating end-to-end applications. Technically, our online quantum algorithm ‘quantizes’ classical algorithms based on the optimistic multiplicative weight update method. At the heart of our algorithm is a fast quantum multi-sampling procedure for the Gibbs sampling problem, which may be of independent interest.


演讲者 Minbo Gao 博士(中国科学院软件研究所) 地址 理学院东北楼四楼报告厅(404)
会议时间 2024-11-08 时间段 2024-11-08 15:00-16:00